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Abstract 

 Scoliosis, as a common disease that can be observed on children, needs to be diagnosed 

as early as possible to avoid deterioration. Traditional methods require experienced doctors to 

spend lots of time studying the X-ray images of the back of the patients to calculate the Cobb 

Angle. Modern methods using deep learning technologies require the deep learning models to 

process and learn from the X-ray images of the back of the patients to make diagnosis. However, 

the radiation given out by X-ray machines when collecting X-ray images is harmful for children 

health. None of the existing methods can completely avoid this drawback because X-ray images 

are required in these methods to conduct the diagnosis. 

 In this report, we will summarize our final year project in detail about a new method to 

diagnose scoliosis by synthesizing the X-ray images from the RGB-D images of the back of the 

patients using deep learning models, which can rid the whole process of radiation. We used 6 

anatomical landmarks to reveal the shape of the spine curve. To get these landmarks, we first did 

landmark detection on RGB-D images using the High-Resolution Nets, which is a noble 

framework for pixel-level classification tasks. After that, we used the pix2pix model to 

synthesize X-ray images from RGB-D images and anatomical landmarks. We have already 

achieved some good results on the dataset collected by ourselves and the supporting medical 

staff.  

 The source code and models are available at: https://github.com/dawnonme/FYP-

Gradient-Explosion. The dataset, best performance result in each stage are available at: https://

drive.google.com/open?id=1b8mpmkUcvyEuy7sQqAmVjR_NytFBfyTH. 
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1. Introduction 

  1.1. Background 

 Scoliosis, which is defined as a morbid medical condition where the spine of the patient 

curves sideways, can be easily found on children [1, 2, 3]. As is shown in figure 1 below, the X-

ray on the left has a more twisty spine curve compared with the X-ray on the right, which shows 

the basic characteristic of scoliosis. 

Figure 1: Comparison between spine in scoliosis (left) and normal spine (right). 

 Early diagnosis and treatment can prevent Adolescent Idiopathic Scoliosis (AIS) from 

deteriorating [1, 2]. Therefore, great importance has been laid on the early diagnosis of scoliosis 

in children. Conventionally, scoliosis is diagnosed by computing an angle called the Cobb Angle 

[1, 2, 3]. The Cobb Angle can be computed manually by studying the X-ray image of the back of 

the patient. Overtime, the Cobb Angle has been proved to be reliable and has been the golden 

rule to diagnose scoliosis for many years. However, this traditional method has a lot of 

drawbacks. For instance, manual work induces approximation, which makes it easy for error to 

occur [3]. It also necessitates massive workload and time to study the X-ray images, possibly 
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missing the best timing to treat this disease [3]. Most importantly, X-ray images are taken using 

X-ray machines, which give out radiation. Severe damage to human especially children who are 

not fully mature is likely to caused by the radiation. To address these problems, we proposed our 

project. 

 As the development of deep learning in computer vision, more and more deep learning 

techniques have been designed to solve problems in medical images. In this project, to overcome 

the drawbacks of traditional methods, deep learning technologies were used. 

 This final report is written to give a detailed summary of our final year project — “Early 

Diagnosis of Scoliosis in Children using RGB-D Images by Deep Learning”. It covers all the 

process and outcomes from Sep 1, 2019 to May 2, 2020. This report will first give a brief 

description about our project. Then the review of some related works will be covered. After that, 

it will go through a detailed explanation about the project structure and the implementation 

methodologies. Finally, we will provide some limitations of our project and potential 

improvements that can be made in the future. 

  1.2. Project Objective 

 The objective of this project was to design and implement a deep learning model to 

synthesize X-ray images from the corresponding RGB-D images of the back of the patients. To 

achieve this target, an intermediate step where landmark detection was done on RGB-D images 

would be needed to extract more information about the shape of the spine curve of the patients. 

 It should be highlighted that our project did not make any diagnosis for medical staff. 

Further research was still needed for medical staff to make the proper diagnosis using X-ray 

images generated in this project. In short, our project synthesized X-ray images without further 

analysis of the deformity of the spines. 

 More details will be provided in section 3 and 4. 

2. Preliminary Works 

  2.1. The Cobb Angle 
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 The Cobb Angle is the golden rule for diagnosis of scoliosis. Since its invention in 1948, 

the Cobb Angle has been tested on a great amount medical cases. High accuracy makes it a 

reliable metric in diagnosis of scoliosis [1, 2, 3]. As shown in figure 2, the Cobb Angle measures 

the angle formed by 2 perpendicular lines to the spine curve. Moreover, the larger the Cobb 

Angle, the more possible for the patient to suffer scoliosis. The angle a on the left is the Cobb 

Angle from a spine with scoliosis while the angle b on the right is the Cobb Angle from a normal 

spine. By comparison, angle a is much larger than angle b. 

 

Figure 2: Comparison between the Cobb Angle on a spine with scoliosis (left) and the Cobb 

Angle on a normal spine (right). 

 The Cobb Angle is a basis for diagnosis of scoliosis. In this project, computing the Cobb 

Angle was not the target. However, the synthesized X-ray images would be a prerequisite to 

calculating the accurate Cobb Angle. Therefore, it was essential for us to synthesize X-ray 

images with high quality. 
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  2.2. Anatomical Landmarks 

 Anatomical landmarks are several key points on the back of a person. In this project, we 

only used 6 of them. As shown in figure 3 below, these 6 points contains essential information 

about the shape of the spine curve. C7 and Sacrum measures the starting and the ending points  

for the spine curve. 

 

  

Figure 3: 6 anatomical landmarks involved in the project and their names. 

 As these 6 anatomical landmarks contained essential information about the shape of the 

spine curve, in this project, landmark detection was carried out on RGB-D images to detect these 

6 landmarks, which played a significant role in the later process to synthesize X-ray images. 

  2.3. Existing deep learning-based Methods to Diagnose AIS 
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 Some deep learning-based methods for estimation of the Cobb Angle have made some 

improvements for the traditional methods. Those deep learning-based methods have different 

architectures though, their rough ideas are similar. Instead of manual calculation of the Cobb 

Angle which will cause many errors, those methods use a deep learning model to learn to 

compute the Cobb Angle after processing the X-ray images or moire images of the spines of the 

patients. 

 Although the accuracy of the Cobb Angle was greatly improved by those methods, those 

methods still cannot avoid radiation. As the X-ray machine or the moire machine both gave out 

radiation, those deep learning-based methods were still not suitable for children. 

 Ran et al. proposed a simple deep learning-based method to conduct a 3-step Cobb Angle 

estimation on the moire images of patients [3]. The model was accurate in the estimation of the 

Cobb Angle. However, collection of moire images also involves radiation. 

 What is more, Hongbo et al. proposed BoostNet and MVC-Net for AIS assessment which 

took X-ray images of the patients [1, 2]. The former approach did spinal landmark detection on 

X-ray images while the latter approach took multi-view X-ray images and studied the correlation 

among them. These 2 methods had been proved to be accurate to predict the Cobb Angle. 

Although these 2 models were not the way we go for this project, they did inspire us in the early 

stage of this project. 

 Finally, Meelis et al. proposed a method to detect vertebrae and the spine curve of a 

patient in 3D images of the lumbar spine image of the patient [4]. This project showed a proof of 

concept that 3D information about the surface could be a good reference to estimate the spine 

curve. Although no 3D image was given to us in this project, the concept proved by this work 

inspired us that RGB-D images, which also contained 3D surface information, could also be a 

good reference to predict the spine curve. 

  2.4. High-Resolution Net: Pixel-level Classification Tasks 

 Ke et al. invented a noble framework named the High-Resolution Net (HRNet) in 2019 

for pixel-level classification tasks such as landmark detection, object detection, object 

segmentation, etc. [5]. The idea to keep high-resolution representations and multi-scale fusion 
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during the whole training process became an essential idea to preserve the representation power 

of HRNet. 

 HRNet was used in this project to do landmark detection on the RGB-D images. More 

details will be covered in section 4.2.1. 

  2.5. Conditional GAN: Image-to-Image Translation 

 Traditional generative adversarial networks (GAN) learns a mapping from Gaussian 

random noise to the target distribution [6]. However, the raw material of GAN is drawn from 

random noise, making it hard for GAN to learn the target data distribution. Conditional GAN 

(CGAN) tackles this problem by drawing the input data from some distributions that are believed 

to have relation with the target distribution rather than random noise [7]. Therefore, the basis for 

image-to-image translation is established. 

 Phillip et al. proposed a CGAN-based framework pix2pix for image-to-image translation 

in 2018 [7]. The pix2pix model was used in this project to synthesize X-ray images. More details 

will be covered in section 4.3.2. 

  2.6. From Surface Geometry to X-ray Images 

 Brian et al. proposed a 2-stage deep learning-based method to synthesize X-ray images 

from surface geometry of patients [8]. The concept proved in this paper became the core 

motivation of this project. Synthesizing X-ray images from surface geometry using CGAN was 

proved to be possible in this work. Two deep learning models were designed and trained in 

dependence of each other to generate X-ray images from partial images and parameterized 

images in this work, which also directed us in the early stage of this project. 

3. Project Review 

  3.1. Project Motivation 

 To avoid the potential damage induced by radiation given out by X-ray machines in the 

process to diagnose AIS, we proposed to use RGB-D images to synthesize X-ray images of the 
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back of the patients. As the instrument to take RGB-D images would not give out radiation, this 

problem could be resolved. 

 Then the medical process of diagnosis of AIS could be changed to taking RGB-D image 

of the back of the patient first, synthesizing X-ray image using the RGB-D image, and finally 

computing the Cobb Angle using other technologies. High accuracy and reliability of the Cobb 

Angle can still be retained while the potential damage induced by X-ray machines can be 

avoided. 

 Moreover, the depth images contained essential information of the surface geometry of 

the back, making it possible for the deep learning model to learn the shape of the spine curve. 

  3.2. Project Structure 

 Our project was divided into 3 stages. From figure 4 below, these 3 stages are named data 

collection, landmark detection, and X-ray Synthesis. As shown in figure below, stage 1 spanned 

the whole project period to collect and preprocess as many data samples as possible. In this 

project, we defined a full data sample as a collection of a RGB-D image, an X-ray image, and 6 

anatomical landmarks on the RGB-D image from the back of the same patient. Stage 2 was 

started after some preparation when related papers and technologies were learnt, and 

environments such as Python and PyTorch were set on our personal devices and the GPU farm 

owned by the faculty. Stage 2 temporarily ended at the interim of this project to shift our focus 

from stage 2 to stage 3 when some relatively good results had been achieved at that time with 

small amount of data samples. Stage 2 was refined near the end of the project when more data 

samples were available. Before the interim, we started to prepare for stage 3. After that, stage 3 

was carried out till the end of the project. 

 In next subsection, detailed process and outcomes of each stages will be covered. 
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Figure 4: Flow chart of the project structure. 

  3.3. Project Process and Outcomes 

 In stage 1, we first set up environment for taking RGB-D images in a photo lab of the 

Duchess of Kent Children’s Hospital at Sandy Bay (DKH). After that, staff in the photo lab of 

DKH helped to take RGB-D images using Microsoft Azure Kinect DK and take X-ray images 

using X-ray machines from the back of the voluntary patients. Meanwhile, staff in photo lab also 

labeled the RGB-D images with 6 anatomical landmarks. 

 At the same time, we reviewed all the data samples and reported those samples that were 

judged as bad samples by the professional medical doctor. 

 At the end of the project, 560 full data samples have been collected, while additional 67 

RGB-D images with their landmarks have been collected without corresponding X-ray images. 

 In stage 2, a HRNet-based model was designed and implemented to do landmark 

detection on RGB-D images. The RGB-D images collected in previous stage were fed as input to 

the model. The landmarks labeled on RGB-D images in stage 1 served as the ground truth for 
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training and testing. To find the best configuration for the model, several experiments were 

carried out, details of the experiments will be cover in section 5. 

 In stage 3, a pix2pix-based generative model was designed and implemented to 

synthesize X-ray images. X-ray images were labeled with 2 anatomical landmarks (C7, Sacrum). 

The RGB-D images collected in stage 1 and the landmarks detected in stage 2 will be the input 

of the model. Before that, we preprocessed the RGB-D images and the X-ray images with the 

available landmarks (6 on RGB-D images and 2 on X-ray images). Again, multiple experiments 

regarding different aspects of the model were conducted with detailed explanation demonstrated 

in section 5. The reason why only 2 anatomical landmarks were labeled will be given in section 

4.3. 

  3.4. Workload Distribution 

 The workload distribution is presented in table 1 below. The items in red were done by 

my teammate Huang Siyi, the items in blue were done by myself, and the items in purple were 

done collaboratively by us. 

Table 1: Workload distribution in this project. 

4. Methodologies 

  4.1. Data Collection 

Stage 1 Stage 2 Stage 3 Other

Developed a small 
program for the medical 
staff to control the depth 

camera.

Preprocessed all the data. Preprocessed all the data. Composed detailed project 
plan.

Setuped the depth camera 
in the photo lab.

Designed and 
implemented data 

normalization and data 
augmentation.

Designed and 
implemented data 

normalization and data 
augmentation.

Built project website.

Got statistics of all the 
data.

Implemented the model. Implemented the model. Composed interim report.

Conducted experiments 
and analyzed the result.

Conducted experiments 
and analyzed the result.

Communicated with the 
medical staff.
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    4.1.1. Microsoft Azure Kinect DK 

 Microsoft Azure Kinect DK was the depth camera used in stage 1 to take RGB-D images 

from those voluntary patients. As was illustrated in its documentations, this depth camera could 

not only take RGB images but also take depth images using an advanced depth sensor [9]. 

 As was mentioned in its documentation, Microsoft Azure Kinect DK had an advanced 

depth sensor [9]. Therefore, RGB-D images taken by it had high accuracy. Moreover, Microsoft 

Azure Kinect DK was portable to use because its size was incredibly small. As the room in photo 

lab of DKH was limited, this small depth camera, which was only 5 inches long and 1.5 inches 

thin, could save lots of space, making it convenient for staff to use without interrupting existing 

instruments. On top of that, this camera had an end-to-end software development kit (SDK), 

making it easy to write a short computer program to control the function of the camera [9]. As 

the staff in photo lab did not have any experience in computer science, expectation could not be 

put on them to handle a complicated software. By just a short program written by us, they could 

complete their job with few commands to our program. 

    4.1.2. RGB-D Images 

 A RGB-D image consists of a RGB image and a depth image. One example of RGB-D 

images is shown in figure 5 below. 
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Figure 5: One of RGB-D images which consists of a RGB image (left) and a depth image (right). 

 The pixel value (intensity) of a depth image measures the actual distance from the point 

on actual object to the sensor of the depth camera. In our dataset, the pixel value measures the 

actual distance in millimeters. For example, if a pixel on person has a value on the depth image 

of 1500, then it will be 1500 millimeters or 1.5 meters from the point on the person to the sensor 

of depth camera. As shown in figure 6, in a visualized heat map from a depth image in our 

dataset, the brighter the area, the closer it is to the depth sensor. 

Figure 6: Visualized heat map from a depth image. 

 In this project, the pixel value of depth images varied from 0 to 13824, which meant the 

depth images contained objects or background from 0 to 13.8 meters from the depth sensor. To 

standardize the depth images, the medical staff in photo lab controlled the distance from the back 
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of the patients to the depth sensor to be 1.2 to 1.8 meters. Therefore, the pixel values on the back 

of the patients varied from 1200 to 1800. We also wrote a filtering program and checked 

manually to make sure that all the pixels on the back of the patients fell into this range and 

ignorable pieces of background fell into this range. Some examples of filtered results that were 

chosen at random are shown in figure 7 below. The pixels with value out side [1200,1800] are 

filtered with blue while the pixels on the back of the patients that fell in [1200,1800] are in red. 

 

Figure 7: 6 random depth images after filtering using range [1200,1800]. 

 We had checked image by image that for every depth images in this project, the pixel 

values for the back of the patients fell in the range [1200,1800]. 

 Moreover, to standardize the RGB-D images before inputing to deep learning models, we 

wrote programs to get some statistical information about the RGB-D images. The statistics of 

RGB images are shown in table 2 below. 
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 Table 2: Statistics of RGB images. 

 For depth images, because the variance of whole images was too large while the pixels 

with large values were not on the back of the patients. Therefore, we measured the statistics in 2 

ways. In the first way, we only considered the pixel values that fell in range [1200,1800]. In the 

second way, we considered all the pixel values on depth images. The results are shown in table 3 

below. 

Table 3: Statistics of depth images over 2 measurements. 

 All these statistics were computed after the alignment of RGB-D images, which will be 

covered in next subsection. 

    4.1.3. Alignment of RGB-D images 

 Alignment was an important issue in this project. The initial resolution of the RGB 

images are , while the initial resolution of the depth images are . Depth 

images had some distort when captured, which was eliminated by us using the SDK provided by 

Microsoft. Therefore, without any distort, the difference between a RGB image and the 

Attributes/Channels R G B

Mean 124.033 125.955 137.415

Standard Deviation 50.665 45.107 46.480

Maximum 255 255 255

Minimum 0 0 0

Attributes/Method Back All

Mean 1345.884 2632.375

Standard Deviation 60.431 2496.437

Maximum 1800 13824

Minimum 1200 0

1920 × 1080 640 × 576
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corresponding depth image was a horizontal translation induced by the distance between the 

RGB sensor and the depth sensor on Azure Kinect DK shown in figure 8 below. 

  

Figure 8: Horizontal translation between RGB images and depth images. 

 To find the horizontal translation (  shown in figure), we checked the actual distance 

between the RGB sensor and depth sensor on Azure Kinect DK and computed the mapping from 

ΔS
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the RGB coordinate system to depth coordinate system using the linear transformation equation 

below, where  meant the coordinate on depth images and  meant the coordinate on 

RGB images. 

          

 Then we first aligned them vertically. We resized the RGB images to  to 

match the height of the depth images. After examining the actually distance and calculations, we 

cropped 185 pixels horizontally from the left and 263 pixels horizontally from the right of the 

RGB images. 

 Then we cropped 32 pixels horizontally from the left and right of the depth images. By 

doing this data preprocessing, we got aligned RGB-D images with resolution being . 

 The reason for us to crop the RGB-D images to be square was that, because of the 

environment limits in the photo lab of DKH, the staff could not fix the depth camera after putting 

it vertically. By putting it vertically, the back of the patient could occupy more area of the image, 

which would potentially improve the performance of our deep learning model. However, this 

option was rejected by the medical staff because of the inflexibility in the photo lab. Therefore, 

to reduce some noise from the images, we cropped some area from both sides of the images, 

which would preserve the complete back of the patients and remove some background. 

    4.1.4. Landmarks on RGB-D Images 

 The landmarks for a RGB-D image were stored in a .txt file with 6 lines. As shown in 

figure 9 below, 2 floating point numbers ranged from 0 to 1 will be separated by a tab in each 

line. 

   

[x′ , y′ ]T [x, y]T

[x′ 
y′ ] = F([x

y]) = [a1 a2
a3 a4] [x

y]
1024 × 576

576 × 576
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Figure 9: One of the anatomical landmarks in a .txt file. 

 The 2 numbers in each line showed the coordinate of one anatomical landmark. With the 

first number times the width of the RGB images (1920) being the actual x-coordinate and the 

second number times the height of the RGB images (1080) being the actual y-coordinate. 

 If we plot the landmarks to RGB-D images, the effect is shown in figure 10 below. 

Figure 10: Landmarks on one of the RGB-D images. 

    4.1.5. X-ray Images and Landmarks 

 X-ray images were taken by several X-ray machines due to the medical condition. As a 

result, the resolutions of the X-ray images varied. Therefore, we needed to align all the X-ray 

images. The landmarks on X-ray images were mainly used to align all the X-ray images because 

the landmarks revealed the region of the spine curves. However, due to the time limit of this 

project and limited medical condition, the medical staff were unable to label all the 6 anatomical 

landmarks on X-ray images. Instead, after discussion, the medical staff decided to only label C7 

and Sacrum (the top and bottom landmarks) for X-ray images, which showed the vertical region 

where the spine curves spanned. 
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 X-ray images could be treated both as 1-channel grayscale images and 3-channel RGB 

images. In both cases the pixel values fell in the range [0,255]. 

 More details will be covered in section 4.3.1.  

  4.2. Landmark Detection 

    4.2.1. The High-Resolution Networks 

 The High-Resolution networks (HRNet) is a state-of-the-art deep learning model for 

pixel-level classification tasks such as landmark detection, object detection and object 

segmentation [5]. Ever since its invention in 2019, lots of projects including facial landmark 

detection and human pose estimation have been adopted it as the main architecture and achieved 

good performance. 

 It has also achieved good performances in 2 tasks (Keypoints Detection and Object 

Detection) given in the MSCOCO competition, which is regarded as one of the most 

authoritative competitions in computer vision area [5]. 

 Due to its excellent performance on similar projects about landmark detection, we chose 

this framework for our project. Our project shared similar nature with those projects that had 

already been tested on the HRNet and only 6 landmarks were required to be detected. 

 The architecture of the HRNet is shown in figure 11 below. 

Figure 11: Architecture of the HRNet [5]. 

 As shown in figure 11, the HRNet keeps a high-resolution representation (feature maps) 

during the forward pass, which is one of the big innovation that makes the HRNet successful. 

Unlike traditional framework such as ResNet or VGG which take high-resolution input and 
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generate low-resolution output, HRNet keeps a high-resolution representation to avoid potential 

information loss induced by downsample [5]. 

 Moreover, many subnetworks shown in the figure reveal another big point that makes the 

HRNet better, which is multi-scale fusion. The HRNet fuses the feature maps in the same depth 

with different scales in parallel subnetworks. Multi-scale fusion strengthens the representation 

power of the feature maps in every depth level. Model becomes more robust regarding objects 

with different scales [5]. 

 In this stage, the HRNet took  RGB-D images as input and generated 

 heat maps as output. 

    4.2.2. Dataset Split 

 In stage 2, out of the 560 full data samples, we randomly chose 520 full data samples as 

training dataset while the remaining 40 full data samples as validation dataset. The 67 RGB-D 

images without corresponding X-ray images served as testing dataset. 

 We did not apply cross-validation strategy because our data samples, compared to other 

landmark detection tasks, were not enough. 

    4.2.3. Data Normalization 

 Data normalization is widely used in all kinds of supervised learning tasks to map the 

distribution of data roughly to a standard Gaussian distribution. To achieve this goal, Z-Score 

function shown below will be applied to all the data samples in the dataset, where  is the mean 

of the dataset and  is the standard deviation of the dataset. 

                                                                 

  and  were computed over all the pixel values respectively on RGB images and depth 

images (details has been covered in section 4.1.2). As the distributions of RGB images and depth 

images differed greatly, we applied Z-Score standardization separately on RGB images and depth 

images. For depth images, we use the mean and standard deviation for all the pixel values instead 

of only the pixel values on the back of the patients. 

576 × 576 × 4

144 × 144 × 6

μ

σ

x* = z(x) =
x − μ

σ

μ σ

Page  of 28 81



    4.2.4. Data Augmentation 

 Because the number of data samples were not sufficient, to virtually produce more data 

and make our model more robust, we applied different kinds of data augmentation to our dataset 

during the training process. The ground truth landmarks were transformed accordingly. 

Application of data augmentation also helped to avoid overfit problem. 

 All the data augmentation policies were associated with a probability, meaning that even 

for the same data sample, in different iterations during training, different data augmentation 

policies would be applied. 

 These data augmentation policies made our model capable to handle the abnormal cases 

that could happen in the real-time cases. 

      4.2.4.1. Rotation 

 We randomly rotated our RGB-D images by  to  with probability being 0.6. The 

landmarks were transformed accordingly. 

      4.2.4.2. Horizontal Flip 

 We randomly flipped our RGB-D images horizontally with probability being 0.6. The 

landmarks were transformed accordingly. 

      4.2.4.3. Translation 

 We randomly translated our RGB-D images in the box range  pixels with 

probability being 0.6. The landmarks were transformed accordingly. 

 The box range  made sure that the back of the patients would not be split into 

multiple parts after translation. 

      4.2.4.4. Rescaling 

 We randomly rescaled our RGB-D images with scale factor in range  with 

probability 0.6. The landmarks were transformed accordingly. 

−30∘ 30∘

[−200,200]

[−200,200]

[0.75,1.25]
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      4.2.4.5. Depth Offset 

 We randomly applied depth offset in range  to the depth images with 

probability being 0.6. The landmarks were not affected. 

 Depth offset basically means adding a randomly picked value to all the pixel values in 

depth images. As the pixel value measures the distance in reality, adding some value to the whole 

depth image is equivalent to moving the whole scene forward or backward with respect to the 

depth camera. 

      4.2.4.6. Random Erasing to Background 

 We randomly added random noise to the background of RGB-D images with probability 

being 0.6. The landmarks were not affected. 

 As shown in figure 12 below, we added some random noise to the background of the 

RGB-D images (the black box on the right image). As all the pixels with value fell in range 

[1200,1800] were likely to be on the back of the patients, we only applied this augmentation to 

those pixels with value outside [1200,1800]. 

[−1000,1000]
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Figure 12: Visualized depth image (left) and Visualized depth image with random noise on 

background (right). 

    4.2.5. Training Strategies 

 The model was trained for 60 epochs in total. The initial learning rate is 0.0001 and 

would be reduced to 0.00001 and 0.000001 respectively at epoch 30 and epoch 50. 

 When loading the data, the batch size was 8 because of the memory limit of the GPU 

farm. In each epoch, the training dataset would be shuffled to make the sequence of loading data 

different. 

 In the backward pass, Adam optimizer instead of other popular optimizers such as SGD 

or RMSprop was used to obtain a more stable loss decrement curve. The weight decay and 

momentum for the optimizer were both set to 0. 

 Finally, the model would be validated on the validation dataset at the end of each epoch 

in order to avoid the overfit problem. 

    4.2.6. Ground Truth 

 The 6 anatomical landmarks were transformed to 6 2D Gaussian heat maps centered at 

each landmark with standard deviation being 1.5, which would be stacked to a 6-channel ground 

truth heat map. 

 At the end of the forward pass, this 6-channel ground truth heat map would be fed 

together with the output heat map of the HRNet to the loss function to invoke the backward 

propagation. One example of the 6 heat maps are shown in figure 13 below. Each bright point 

stands for the location of a landmark, which is the peak of 2D Gaussian distribution. All other 

areas are in purple because they are relatively far from the peak thus have low values. 
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Figure 13: Example for the 6 ground truth heat maps. 

4.2.7. Loss Function 

 Our model was optimized against the mean squares error loss (MSELoss) or squared L2 

distance. The formula of MSELoss is given below. 

            

    

 As shown in the formula, the MSELoss is computed as the mean value of the squared L2 

distance between every pair of corresponding pixels on the input matrix M and ground truth 

matrix GT. 

 This loss function is widely used for landmark detection tasks because of its good ability 

to panelize pixel-level mismatch. 

M, GT ∈ ℝm×n×c

MSEL oss(M, GT ) =
Σk<c

k=0Σi<m
i=0 Σ j<m

j=0 (Mi, j,k − GTi. j,k)2

mnc
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    4.2.8. Performance Metrics 

 We numerically measured the performance of our model using the mean MSELoss on the 

testing dataset. The less the value of the mean MSELoss on the testing dataset, the better the 

model. 

 On top of that, we also asked the professional medical staff to manually review the output 

of the model on the testing and validation set in case of any problems. So far, we have received 

positive feedbacks about the output. 

    4.2.9. Result 

 We achieved  in mean MSELoss on the testing dataset. More comparison 

and experiments will be covered in section 5.1. 

 The result landmarks visualized on RGB-D images will be shown in table 21 in the 

appendix. 

  4.3. X-ray Synthesis 

    4.3.1. Data Alignment 

 As mentioned before, the X-ray images were taken using several X-ray machines due to 

the medical condition in the photo lab. Therefore, the resolution of the X-ray images varied 

greatly. To make things worse, it seemed that the medical staff did not follow the standard 

procedures to take X-ray images. For example, as shown in figure 14 below, the upper image has 

the patient roughly at the center of the image while the lower image does not. Additionally, the 

upper image does not contain the full head and the thigh of the patient while the lower image 

does. Similar issues occurred frequently in the X-ray images, making it hard to do accurate 

image-to-image translation as the pixels were not aligned. 

4.747 × 10−5
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Figure 14: 2 unaligned X-ray images. 

 To address the problem, we made use of the 2 anatomical landmarks (C7 and Sacrum) to 

align all the X-ray images. Medically speaking, C7 and Sacrum can be respectively treated as the 

start point and the end point of the spine. Therefore, C7 and Sacrum can collaboratively show the 

vertical area that the spine curve lies in. However, because of the time limit, the medical staff 

were not able to label all the 6 anatomical landmarks, making it impossible for us to accurately 

align the X-ray images horizontally. Therefore, we could only made an approximate horizontal 

alignment. 

 Suppose the coordinates of 2 anatomical landmarks were denoted by  and , 

and the resolution of the X-ray images were denoted by . Vertically, we chopped off the 

areas represented by  and . Assume the new vertical height was  

 and pivot was defined as . Then horizontally, 

we chopped off the areas represented by  and . After that, the new 

(x1, y1) (x2, y2)

W × H

y < ⌊y1 −
H

150
⌋ y > ⌊y2 +

H
150

⌋

H′ = ⌊y2 +
H

150
⌋ − ⌊y1 −

H
150

⌋ p = ⌊
x1 + x2

2
⌋

x < ⌊ p −
H′ 
2

⌋ x > ⌊ p +
H′ 
2

⌋
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horizontal width of the new image . Finally, we used anti-alias technology to resize the 

images to . 

 After this alignment, all the X-ray images contained only the back of the patients. Nearly 

all other unnecessary areas had been removed. For the sake of conciseness, we manually checked 

all the X-ray images to guarantee all of them containing the appropriate area. 

 We also did the same procedures on the RGB-D images to roughly align the X-ray 

images with the RGB-D images to facilitate image-to-image translation. However, accurate 

alignment between these 2 datasets were not feasible because the body positioning of the patients  

would be different when taking the RGB-D images and X-ray images. 

 An aligned data sample is shown in figure 15 below. 

Figure 15: An aligned data sample containing a RGB image (left), a depth image (middle), an X-

ray image (right) and anatomical landmarks (not shown). 

    4.3.2. The pix2pix Model 

 The pix2pix model is a CGAN-based, image-to-image translation framework [7]. Unlike 

traditional GAN which takes random noise as input [6], CGAN takes a pre-defined data as input, 

which reinforces the power of synthesis of GAN. In pix2pix model, images are taken as input to 

W′ =
H′ 
2

128 × 256
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generate synthetic images. Ever since its invention in 2018, it has been used in many image-to-

image translation tasks such as image style transformation, image coloration, image 

enhancement, etc. [7]. One of the tasks that had already been carried out using this model before 

our project was the one carried out by Brian et al. in 2018 as described before [8]. In his project, 

he used surface geometry of the patients and some landmarks to synthesize the X-ray images of 

the patients, which was similar to our project as the RGB-D images also contained surface 

geometry information of the back of the patients. Brian and his team got acceptable result in his 

project [8]. 

 Due to its good performance on similar projects, we chose pix2pix model as the main 

architecture of this stage. 

 In this project, the pix2pix model took 10-channel images as input. Each 10-channel 

image consisted of a 3-channel RGB image, a 1-channel depth image, and 6 1-channel heat maps 

generated using the same method presented in section 4.2.6 using 6 anatomical landmarks on 

RGB-D images. The model generate 3-channel X-ray images. The resolution of all the images 

including heat maps were . 

      4.3.2.1. Generator 

 Unlike the original paper of pix2pix, U-Net was not chosen in our project. Instead, we 

chose ResNet with 9 ResNet blocks as the backbone of the generator. The reason for us to 

abandon U-Net was that the U-Net family only support square images as input and output. It was 

true that we could use padding to transform the rectangle images into square images, which made 

it possible for U-Net to come into use. However, later experiments showed that it was not a good 

choice. More details about the experiments will be covered in section 5.2. 

 On the other side, ResNet family supported either square images or rectangle images. 

Moreover, ResNet showed a good adaptation on our rectangle training dataset. To summarize, 

ResNet showed its superiority over U-Net in our project. Hence, ResNet were chosen. 

 On top of that, we added some dropout layers with probability being 0.5 inside residual 

blocks to avoid overfit problem, which was effective as shown in the experiments later. More 

details about the experiments will be covered in section 5.2. 

128 × 256
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      4.3.2.2. Discriminator 

 We used  PatchGAN proposed in the original paper as the backbone for our 

discriminator [7]. This backbone would take the synthetic images or real images as several 

 small patches to judge whether the input image was fake or real. The advantages of this 

architecture were great. Firstly, the input of the discriminator was reduced in size, accelerating 

the training speed [7]. Secondly, as the generator was a pure convolutional network without any 

fully connected layers, the resolutions of input and output images were not limited. Then if the 

discriminator processed images in  small patches, the resolutions of the input images 

were also not limited, making it easier to try different image resolutions [7]. 

      4.3.2.3. GAN Mode 

 In this stage, conditional Least Squares GAN (CLSGAN) was adopted. LSGAN which 

used least square error as the loss function stabilized the training process greatly compared to 

Vanilla GAN loss used in ordinary GAN. 

    4.3.3. Dataset Split 

 In stage 3, out of the 560 full data samples, we randomly chose 520 full data samples as 

training dataset while the remaining 40 full data samples as validation dataset. The testing dataset 

was the same as the validation dataset. 

 We did not apply cross-validation strategy because our data samples, compared to other 

image-to-image translation tasks, were not enough. 

    4.3.4. Data Normalization 

      4.3.4.1. Contrast Stretching on X-ray Images 

 As the X-ray images were taken by several X-ray machines, the contrast and brightness 

of the X-ray images also differed apparently. If we ignored this issue, it was a potential risk for 

our model to generate some X-ray images with extreme contrast or brightness, which were hard 

for human beings to study. To make thing worse, it was possible for the model to learn to 

70 × 70

70 × 70

70 × 70
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determine the contrast and brightness of the synthetic X-ray images by RGB-D images, which 

was clearly not a necessary thing we wanted the model to learn. 

 To tackle the problem, we applied contrast stretching on all the X-ray images before they 

were fed to the model. Contrast stretching is an image enhancing algorithm designed to enhance 

the contrast of an image. The core of contrast stretching is linearly mapping the intensity of an 

image to the full range which is usually [0,255]. To avoid the extreme case where the maximum 

or minimum intensity was too far away from the majority of the intensities, we applied contrast 

stretching based on the 2nd and 98th percentile of the images. Suppose the 2nd and 98th 

quantiles of the images were denoted by , and the target intensity range was 

 the mapping function was given by 

                                                         . 

 By rescaling the intensity of all the images, the brightness mismatch was also solved. 

 As shown in figure 16 below, contrast stretching had a good effect to transform the X-ray 

images with abnormal contrast or brightness to high-quality X-ray images. Most importantly, 

contrast stretching made all the X-ray images roughly have the same contrast and brightness, 

which facilitated the model to learn a data distribution in a fixed range. 

 

p2, p98

[rmin, rmax] = [0,255]

x* = (x − rmin)
p98 − p2

rmax − rmin
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Figure 16: X-ray images before and after contrast stretching. 

      4.3.4.2. Further Normalization 

 After contrast stretching, the range of the intensity of X-ray images were in range [0,255] 

represented by 8-bit unsigned integer. However, for convolutional neural network, it had been 

proved to be a good technique to normalize the input and output images into a small range which 

was usually [0,1] or [-1,1]. In this stage, all the images including RGB images, depth images, and 

X-ray images were linearly normalized into the range [-1,1]. 

    4.3.5. Data Augmentation 

 The data augmentation policies were similar to that in stage 2 with some adjustments. 

When training a GAN, usually a great amount of data samples would be needed. However, we 

only had 520 training samples at that time, which was especially small. Therefore, data 

augmentation was extremely important to strength the representation power of our model and 

avoid overfit. Hence, we increased the probability of each data augmentation policy. 

 Moreover, as the pix2pix was expected to achieve the best performance when the input 

images and output images were aligned, therefore, for spatial data augmentation, RGB-D images, 

X-ray images and anatomical landmarks would be transformed at the same time with the same 

parameters. 

      4.3.5.1. Rotation 

 We randomly rotated our RGB-D images and X-ray images by  to  with 

probability being 0.65. The landmarks were transformed accordingly. 

      4.3.5.2. Horizontal Flip 

 We randomly flipped our RGB-D images and X-ray images horizontally with probability 

being 0.65. The landmarks were transformed accordingly. 

      4.3.5.3. Translation 

−30∘ 30∘
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 We randomly translated our RGB-D images and X-ray images in the box range  

pixels with probability being 0.65. The landmarks were transformed accordingly. 

      4.3.5.4. Rescaling 

 We randomly rescaled our RGB-D images and X-ray images with scale factor in range 

 with probability 0.65. The landmarks was transformed accordingly. 

      4.3.5.5. Depth Offset 

 We randomly applied depth offset in range  to the depth images with 

probability being 0.6. The landmarks were not affected. 

    4.3.6. Training Strategies 

 We trained the model for 200 epochs. In the first 100 epochs, the learning rate was 

0.0002. In the second 100 epochs, the learning rate was reduced linearly from 0.0002 to 0. 

 When loading the data, batch size was 1 because instance normalization layer worked 

better than the batch normalization layer in pix2pix model. In each epoch, the training dataset 

would be shuffled to make the sequence of loading data different. 

 In the backward pass, Adam optimizer instead of other popular optimizers such as SGD 

or RMSprop was used to obtain a more stable loss decrement curve. The weight decay and 

momentum for the optimizer were set to 0 and 0.5 respectively. 

 Finally, the model would be validated on the validation dataset at the end of every 10 

epochs in order to avoid the overfit problem. 

    4.3.7. Loss Function 

 The loss function and was given by the equations below:  

                                           . 

 As proposed in the original paper, the loss function was composed of the conditional 

LSGAN loss and a weighted L1 loss, which was different from the original LSGAN [7]. The 

experiments in the original paper showed that if only the conditional LSGAN loss was used, then 

[−30,60]

[0.75,1.25]

[−1000,1000]

G* = arg min
G

max
D

ℒcLSGAN(G, D) + λℒL1(G )
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the synthetic images tended to be much sharper and have many artifacts which did not exist in 

the ground truth. If only the L1 loss was used, then the synthetic images were very blurry. When 

combining these 2 loss functions, the result seemed to be close to ground truth. This conclusion 

held true in our projects as proved by our experiments. More details about those experiments will 

be covered in section 5.2. 

 In our project,  was set to be 10.0. 

    4.3.8. Performance Metrics 

 It was really hard to find a good numerical metric to judge the performance of our model. 

The noble Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) were 

usually ideal choices to measure how close the synthetic image was to the ground truth image. 

However, in this project, these 2 metrics were not always reliable. For example, some examples 

of the situations where SSIM and PSNR performed poorly were shown in table 4 below. 

λ

Ground Truth 
Images

Sample 
Synthetic 
Images 1

Sample 
Synthetic 
Images 2

Images

0.360 0.153

28.128 28.227PSNR ↑

SSIM ↑

Page  of 41 81



Table 4: Cases where SSIM and PSNR failed to measure the performance of different models in 

this project. 

 From table 4 above, SSIM tended to prefer the blurry images as the blurry images had 

higher SSIM than the clear images. PSNR had little difference between blurry images and clear 

images, which was not suitable to measure the performance of the model. Therefore, we 

abandoned SSIM and PSNR. Instead, 2 other metrics were chosen. 

 The shape of the spine curve and the clarity of the synthetic images were the main 

concern in this project. Therefore, we used 2 metrics to measure these 2 factors respectively. 

 Histogram intersection was used to measure the similarity between the synthetic X-ray 

images and ground truth X-ray images. This metric calculated the intersection between the 

histograms of the synthetic X-ray images and ground truth X-ray images. The range of this 

metric was [0,1], the larger this metric, the more similar the synthetic image was to the ground 

truth image. This metric was good at measuring the clarity of the X-ray images. 

 On top of that, we used Image hashing value to measure the structural similarity of 2 

images in binary level. Image hashing was a value no less than 0. The smaller the image hashing 

value was, the closer these 2 images were. 

Images

0.313 0.231

28.295 28.220

Ground Truth 
Images

Sample 
Synthetic 
Images 1

Sample 
Synthetic 
Images 2

PSNR ↑

SSIM ↑
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    4.3.9. Result 

 Because of the limited number of data samples and possible alignment error, the 

performance of our model was not perfect. However, more than half of the synthesized images 

had a similar spine curve as their ground truth images and nearly all of the synthesized images 

were relatively clear for human beings to study. For a numeric measurement, our model had 0.9 

in histogram intersection and in 5.675 image hashing. 

 The synthesized X-ray images will be presented in table 22 in the appendix. 

5. Experiments 

 In this section, we will name experiments with a capital letter and a number. For 

landmark detection, the experiments will be in the form of , where  is an integer. For X-ray 

synthesis, the experiments will be in the for of  where  is an integer. 

 Experiments that were trained using exactly the same methods as described in section 4.2 

and 4.3 will be name as A0 and B0. A0 and B0 had the models with relatively the best 

performances in their stage respectively, which was the reason why we presented the 

methodologies of these 2 models in section 4. 

 All the experiments followed the single variable principle, that was, every time we 

compared 2 experiments, only 1 variable in these 2 experiments would differ. All other variables 

would be kept the same. 

  5.1. Landmark Detection 

 In this section, the loss curve figures of training process will be shown on the left while 

the loss curve for validation process will be shown on the right. 

 The independent variable for training process is the number of iterations while the 

independent variable for validation process is the number of epochs. As we have 520 training 

samples and the batch size per iteration was 8, one epoch will have 65 iterations. 

    5.1.1. Input Data Composition 

      5.1.1.1. Motivation 

A x x

Bx x
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 It seemed intuitive that the depth image contained essential surface geometry of the back 

of the patients hence could provide sufficient information to the model to predict the locations of 

6 anatomical landmarks. However, this intuition still needed to be proved. 

 Moreover, the RGB images, which seemed not to contain surface geometry might or 

might not help to detect the 6 anatomical landmarks. An experiment was also needed to verify 

the validity of using RGB images in the input data. 

 As a result, we carried out several experiments to find the best composition of the input 

data. 

      5.1.1.2. Experiment Design 

 We had RGB images and depth images. Hence, there were 3 ways to compose our input 

data – pure RGB images, pure depth images, and combined RGB-D images. Then we conducted 

3 experiments respectively using pure RGB images, pure depth images and combined RGB-D 

images as input. We then compared and analyzed the performances of these 3 models in training, 

validation, and testing process. 

 We controlled all other parameters, only changed the input composition. 

      5.1.1.3. Result and Analysis 
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Figure 17: The loss curves for training (left) and validation (right) with 3 data compositions. 

Table 5: Results of 3 data compositions on testing dataset. 

 As shown in figure 17, the gray curve which stood for A0, had superior performances 

compared with the blue curve and orange curve in both training and validation processes. While 

blue curve which stood for pure RGB images came the second place. In the training loss curve 

on the left, the gray curve converged to the lowest loss value compared to other 2 curves, 

showing that using RGB-D images as input helped more for the model to fit the training data 

than using pure RGB images or pure depth images. Moreover, RGB images could helped more 

for the model to fit the training dataset than pure depth images.  

 Coming to the validation loss figure on the right, none of these 3 models suffered the 

overfit problem because the validation loss was overall slightly less than the training loss at the 

same time, therefore, the validation curve could be a good measurement of the performance of 

the model. 

 From the validation loss curve figure, the gray curve had the lowest final MSELoss on 

validation dataset compared to other 2 curves and the orange curve came second. The result was 

the same as the training loss curve. Then theoretically, using RGB-D images would achieve the 

lowest mean MSELoss on the testing dataset, showing it superiority over 2 other data 

compositions, which was the truth after we tested these 3 models on our testing dataset. 

 From table 5, A0 using RGB-D images as input achieved an incredible mean MSELoss 

on the testing dataset which was lower than A2 and the lower than A1. The result on testing 

processes was consistent with the training and validation processes. 

Experiment Name Input Composition Number of Channels

A1 RGB 3 6.285

A2 D 1 5.816

A0 RGB-D 4 4.747

Mean MSELoss ( )10−5
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 Therefore, using RGB-D images as input data was the best option to detection the 

landmarks. RGB images and depth images both contained some information about the surface 

geometry. But neither of them could provide sufficient information for the model alone. Hence, 

combining them was a superior choice. 

    5.1.2. Validity of Data Augmentation 

      5.1.2.1. Motivation 

 In this stage, we applied lots of data augmentation. To prove that our data augmentation 

actually helped to make the model more robust and help the model to avoid overfit problem, we 

conducted the experiment. 

      5.1.2.2. Experiment Design 

 We trained a model without data augmentation policies as described in section 4.2 with 

all other configurations unchanged. And then we compared the performance of this model with 

the model trained in A0. 

 This time, it was not sufficient to only compare the performances of 2 models using 

numerical metrics (mean MSELoss). Some actual visualized results (i.e. figures with the original 

image and predicted landmarks) were necessary for us to truly prove the validity of data 

augmentation. However, the testing dataset were all the normal images with a person standing 

straight at the center of the images. It was hard for us to tell the difference between the predicted 

landmarks of these 2 models. Hence, we applied data augmentation to the testing dataset to make 

the testing data samples more “difficult” only for this experiment, which was not a common 

practice. 

      5.1.2.3. Result and Analysis 
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Figure 18: The loss curves for training (left) and validation (right) with or without data 

augmentations. 

Table 6: Results of model with or without data augmentations on testing dataset. 

 As shown in figure 18, the blue curve which stood for absence of data augmentations 

showed a seemingly better fit than the gray curve which stood for presence of data 

augmentations, which was true. However, starting from the 28th epoch or the 1820th iteration, in 

A3, the validation loss started to increase while the training loss started to decrease substantially. 

The validation loss was much higher than the training loss, which was a typical characteristic of 

overfit problem. In A3, the model fitted the training dataset too much, leading to model to 

collapse on the validation dataset. Meanwhile, in A0, the validation loss was overall slightly 

higher than the training loss, meaning that it was unlikely for A0 to suffer the overfit problem. So 

Experiment Name Presence of Data 
Augmentations on 
Training Dataset

Presence of Data 
Augmentations on 

Testing Dataset

A0 TRUE FALSE 4.747

A3 FALSE FALSE 5.798

A0 TRUE TRUE 5.247

A3 FALSE TRUE 25.356

Mean MSELoss ( )10−5
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far, data augmentation had been proved to be effective in helping the model to avoid the overfit 

problem. 

 The testing process shown in table 6 led to a consistent conclusion. A0 with data 

augmentation showed absolute superiority over A3 without data augmentation. Before applying 

data augmentation to the testing dataset, because the testing samples were relatively easy, testing 

loss in both experiments were closed. However, after applying data augmentation to the testing 

dataset, the testing loss in A3 boosted to an incredibly high level – 25.356, which was almost 5 

times the  

testing loss in A0, indicating that the model in A3 had no power to handle abnormal samples 

where the patients were not in the normal position. 

 This lemma was showed clearly in the visualized images and predicted landmarks below. 

The model in A3 couldn’t handle the augmented samples very well. 
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Figure 19: 9 randomly picked results images and landmarks in A3.  

 On the contrary, the model in A0 could handle abnormal samples very well, which is 

shown in figure 20 below. 

Figure 20: 9 randomly picked results images and landmarks in A0.  

 Therefore, application of data augmentations was proved to be a good technique to make 

the model more robust and avoid overfit problem. 

    5.1.3. Method for Data Normalization 

      5.1.3.1. Motivation 
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 It was a big problem since we first worked on the project. As shown in section 4.1.2, the 

RGB images and depth images differed greatly in their data distribution. The average value of 

pixel on depth images was much larger than that on RGB images and so as the standard 

deviation. Obviously, it was not a wise option to directly train the model using the raw RGB-D 

images. Data standardization was needed before we input the RGB-D images to the model. 

 To find the best method to do the data standardization, several experiments were 

conducted. 

 In the experiments conducted below, RGB images and depth images would be 

standardized separately using their own statistics. 

  

      5.1.3.2. Experiment Design 

 There are 2 common methods for data standardization. The first one is to scale the data 

directly on the minimum and maximum pixel values in the dataset (Min-Max). The formula is 

shown below. 

                                                                 

The Min-Max standardization will linearly map all the pixel values to . 

 Another common method is to apply Z-Score function mentioned in section 4.2.3. The Z-

Score standardization will map all the pixel values roughly to a standard Gaussian distribution 

centered at 0. Obviously, we needed to use experiments to prove which method was superior. 

 Another issue was that, the data distribution of depth images was too dispersive. As 

shown in figure 21 below, most of the values fells out of the range . Then the mean 

and standard deviation would be greatly influenced by those pixel values. This indicated that 

applying Z-Score using the mean and standard deviation of the whole dataset might not be a 

good choice because the Z-Score would then map the pixel values on the back of the patients far 

from 0, which was the center of the new distribution after standardization. 

  

x* =
x − xmin

xmax − xmin

[0,1]

[1200,1800]
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Figure 21: Distribution of the pixel values of the depth images (values that occurred rarely will 

have a very short bar so that could not be observed). 

 Combining these 2 issues, 4 experiments were conducted with 1 of which being A0. We 

set a blank reference A4, where we didn’t do any standardization before training. In A5 and A6, 

we applied Min-Max standardization to RGB-D images while A6 used the minimum and 

maximum value of the whole dataset and A5 only used the minimum and maximum value on the 

back of the patients. In A7, we applied Z-Score standardization to RGB-D images with the mean 

and standard deviation only on the back of the patients. 

      5.1.3.3. Result and Analysis 
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Figure 22: The loss curves for training (left) and validation (right) with different data 

standardization methods. 

 Table 7: Results of model with different data standardization methods on testing dataset. 

 From figure 22 and table 7, we could see clearly that applying Z-Score with mean and 

standard deviation for the whole dataset dominated all other alternatives in both training and 

validation processes. 

    5.1.4. Comparison with Other Models 

      5.1.4.1. Motivation 

 The HRNet was regarded as a state-of-the-art deep learning model for pixel-level 

classification tasks which did well in other projects. However, doing well in other projects did 

not necessarily mean good performance in this project. Therefore, to support our choice of the 

HRNet, we compared the performance of HRNet in this project with performances of other 

models in this projects. 

      5.1.4.2. Experiment Design 

 We chose 3 models that were previously widely used in landmark detection tasks: 

ResNet-101, VGG-16, and Hourglass-104. Then we trained these 3 models on our dataset. These 

3 experiments were named A6, A7, and A8. 

Experiment Name Standardize Method

A4 None 26.744

A5 Min-Max back 19.801

A6 Min-Max all 17.989

A7 Scaled Z-Score back 8.591

A0 Scaled Z-Score all 4.747

Mean MSELoss ( )10−5
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 The training and validation curves for different models differed hugely, which made it not 

so useful to reveal the performances of different models. Therefore, here we only show the final 

result measured in mean MSELoss on testing dataset. 

      5.1.4.3. Result and Analysis 

Table 8: Results of different models on the testing dataset. 

 From table 8, it was clear that the HRNet yielded the smallest mean MSELoss on the 

testing dataset. Therefore, to some extent, we could say the HRNet was the best choice for stage 

2 of this project. 

 However, this analysis was not so robust that could show the superiority of the HRNet 

over all other existing models because the parameters in different models were very different. It 

was hard to say that we followed strictly the one variable principle in different experiments with 

different models. 

  5.2. X-ray Synthesis 

    5.2.1. X-ray Enhancement 

      5.2.1.1. Motivation 

 As stated in section 4.3.4.1, the contrast and brightness of X-ray images varied greatly. 

We wanted the model to generate X-ray images with nearly the same, normal contrast and 

brightness. Therefore, we carried out contrast stretching on all the X-ray images before training 

to make them in normal contrast and brightness. However, there were multiple methods to 

normalize the contrast and brightness of images. Contrast stretching was not the latest and the 

Experiment Name Model

A0 HRNet 4.747

A6 ResNet-101 6.882

A7 VGG-16 21.960

A8 Hourglass-104 8.094

Mean MSELoss ( )10−5
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best one in usual cases. More advanced methods such as histogram equalization and adaptive 

equalization were the common choices. 

 Therefore, we needed to carry out experiments to prove that contrast stretching worked 

best on our dataset. 

      5.2.1.2. Experiment Design 

 We enhanced all the X-ray images using contrast stretching, histogram equalization and 

adaptive equalization respectively to create 3 datasets. Then we compared the images in this 3 

datasets after enhancement originated from the same image in the raw dataset to see if the X-ray 

images were in the nearly the same and normal brightness and contrast. We also plotted the 

distributions of the images in these 3 datasets to see if the range of intensities were normalized 

roughly to [0,255]. 

 On top of that, we conducted an experiment B1 to compare with B0. In B1, we did not 

apply contrast stretching before training. With all other factors unchanged, comparison between 

the synthetic images in B1 and B0 could reveal the validity of contrast stretching. 

      5.2.1.3. Result and Analysis 

Original Images Images after 
Contrast 

Stretching

Images after 
Histogram 

Equalization

Images after 
Adaptive 

Equalization
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Table 9: X-ray images enhanced by 3 algorithms. 

 As shown in table 9 above, all of these 3 algorithm could cause a big improvement on the 

original X-ray images on contrast and brightness. Images after enhancement were much clearer 

than the original images for medical staff to study. 

 However, the contrast of the images generated by histogram equalization was so high that 

the images looked unnatural. The comparison between the white and black pixels were too sharp 

which was not an ideal condition for medical staff to study. Therefore, histogram equalization 

was not suitable for our project. 

 For contrast stretching and adaptive equalization, the enhanced images looked milder and 

still good in brightness and contrast. However, a clear difference of brightness could be observed 

among the images enhanced by adaptive equalization. To explain this phenomenon, we plotted 

the data distributions of the images. The intensities were scaled with 255 before plotting. 

Original Images Images after 
Contrast 

Stretching

Images after 
Histogram 

Equalization

Images after 
Adaptive 

Equalization
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Table 10: Distributions of X-ray images shown in table enhanced by 3 algorithms. 

 From table 10 above, it was clear that adaptive equalization could not normalize the 

intensities of all X-ray images roughly in the range [0,255]. The upper image had overall higher 

intensities, making it looked brighter while the lower image had overall lower intensities, making 

it looked darker. However, after adaptive equalization, the range occupied by the upper image 

was still larger than the range occupied by the lower image. The upper image had some 

intensities approaching 1.0 which was 255 before scaling while the lower image tended not to 

have intensities over 0.8 which was about 204 before scaling. Therefore, it was natural for the 

images enhanced by adaptive equalization to have apparent difference in brightness. 

 Combined these 2 tables above, we could conclude that contrast stretching combined the 

advantages of histogram equalization and adaptive equalization. After enhancement by contrast 

stretching, the images were nice looking and not too sharp. Moreover, the images enhanced by 

contrast stretching did not show apparent difference in brightness. 

 We did not stop at the input level. B1 without contrast stretching was trained for 

comparison. Part of the results of B0 and B1 are shown in the table below. 

Original Images Images after Contrast 
Stretching

Images after Histogram 
Equalization

Images after Adaptive 
Equalization
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Table 11: Synthetic X-ray images and the corresponding ground truth in B0 and B1. 

 From table 11, we could clearly observe that the contrast and brightness of the synthetic 

images in B1 varied and did not always match the contrast and brightness of the ground truth 

Synthetic 
Images in B1

Ground Truth 
in B1

Synthetic 
Images in B0

Ground Truth 
in B0

Sample 1

Sample 2

Sample 3

Mean 
Histogram 
Intersection

0.816 0.9

Mean Image 
Hashing

6.875 5.675
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images. On the other side, the images synthesized in B0 had good contrast and brightness which 

was easy for medical people to clearly study. The synthetic images also matched the ground truth 

images in B0 in contrast and brightness. This showed that contrast stretching helped to 

standardize output images. 

 Numerically speaking, B0 and B1 did not differ greatly in mean L1 distance, indicating 

that B0 did not perform better than B1 regarding spine curve. However, the difference of mean 

histogram intersection showed that adding contrast stretching helped a lot to generate clear X-ray 

images. 

    5.2.2. Avoid Overfit 

      5.2.2.1. Motivation 

 GAN-based projects tended to need huge amount of data to achieve a good result [6]. 

However, there were only 520 data samples in our training dataset when we started to write this 

report. Therefore, theoretically, it was easy for our model to suffer overfit problem on such a 

small dataset. To avoid this problem, we adopted both data augmentation and dropout layers. 

However, whether these techniques really helped to avoid the overfit problem needed to be 

proved by experiments. 

      5.2.2.2. Experiment Design 

 We carried out 3 experiments B2, B3, and B4 to compare with B0. In B2, only dropout 

layers technique was used during training. In B3, only data augmentation was used during 

training. In B4, neither of dropout layers technique nor data augmentation was used during the 

training process. 

      5.2.2.3. Result and Analysis 

Experiments Name Techniques to Avoid 
Overfit

Mean Histogram 
Intersection

Mean Image Hashing

B0 Dropout and Data 
Augmentation

0.9 5.675

B2 Dropout 0.883 7.125
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Table 12: Mean histogram intersection and mean image hashing in B0, B2, B3, B4. 

Table 13: Synthetic X-ray images and the corresponding ground truth in B0, B2, B3, B4. 

B3 Data Augmentation 0.862 9.825

B4 None 0.771 14.375

Experiments Name Techniques to Avoid 
Overfit

Mean Histogram 
Intersection

Mean Image Hashing

Ground Truth 
Images

Images in B0 Images in B2 Images in B3 Images in B4

Sample 1

Sample 2

Sample 3
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 All the training samples in these 4 experiments had good performance where the 

synthesized images were very closed to the ground truth, meaning that in these 4 experiments, 

the model fitted the training dataset very well. However, it could be observed clearly that some 

models, which had good performance on training dataset, performed poorly on testing dataset. 

 As shown in the table 13, if neither data augmentation nor dropout was used in training, 

like in B4, the model crashed on the testing dataset. The spine curves completely lost their shape 

in B4. It could be speculated that B4 suffered great overfit problem as it performed very well on 

the training dataset. 

 Similarly, dropout in B2 and data augmentation in B3 helped the model to avoid overfit 

problem to some extent. When they were combined in B0, the performance seemed to be the 

best. The numerical metric shown in table also proved that. 

 Therefore, data augmentation and dropout layer did help the model to avoid overfit 

problem. 

    5.2.3. Data Alignment 

      5.2.3.1. Motivation 

 Alignment was an extremely important step in our project. Especially, the X-ray images, 

before alignment, varied in all kinds of aspects. Before we got the landmarks to align the X-ray 

images, we also did several experiments using the unaligned X-ray dataset. To show that 

alignment essentially helped the model to generate better images, we carried out this experiment. 

      5.2.3.2. Experiment Design 

 We used unaligned X-ray images and RGB-D images to training our model in B5. And 

we compared B5 to B0. We did not calculate the numerical metrics for the contrast between B0 

and B5 were too obvious. Instead, we compared the quality and similarity of the synthesized 

images to see which experiments produced more high-quality X-ray images with correct spine 

curves and good clarity. Analysis from medical people were also a great reference in this 

experiment. 
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      5.2.3.3. Result and Analysis 

Table 14: Synthetic X-ray images and the corresponding ground truth in B0 and B5. 

Synthetic Images in 
B5

Ground Truth in 
B5

Synthetic Images in 
B0

Ground Truth in 
B0

Sample 1

Sample 2

Sample 3
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 From the result shown in table 14, it was so clear that, the unaligned X-ray dataset 

performed poorly on the testing dataset. As shown in the samples of B5, some of the synthetic 

images did not have a complete shape of person, some of the synthetic images did not have a 

clear spine curve. While on the other side, after alignment, in B0, the X-ray images synthesized 

were much more clearer. Moreover, the shape of spine curve had a higher probability to match 

the shape of spine curves in ground truth X-ray images. 

 Therefore, after alignment, the performance of our model improved a lot. 

    5.2.4. Backbone for Generator and Image Resolution 

      5.2.4.1. Motivation 

 U-Net was the backbone chosen in the original pix2pix paper which yielded the best 

performance [7]. However, this network only support square images. In our project, after we 

aligned the X-ray images, the resolution was . However, we could add 2  

paddings to the left and right of a rectangle image to transform its resolution into . 

Then we could instead use U-Net as the backbone of the generator. 

 Hence, we conducted several experiments to find the best backbone for the generator in 

our project. 

 Moreover, it was argued by the author of the pix2pix paper that pix2pix model was not 

good at handling images with large resolution. The default resolution for input and output images 

were  if square images were used. However, we observed that when the X-ray images 

were scaled to , the ground truth images started to become pixelated, for the edges of 

square pixels could be seen clearly. We were concerned this phenomenon might affect the 

performance of our model. Therefore, to find the best resolution of input and output images for 

the model, several experiments with larger resolution input and output images were carried out.  

      5.2.4.2. Experiment Design 

 We denoted the dataset with  images as “Rectangle”, and the dataset with 

 images after padding from “Rectangle” by “Square”. Further, we created another 

dataset named “RectangleHD” used the same procedures to crop and align the raw X-ray images 

128 × 256 64 × 256

256 × 256

256 × 256

128 × 256

128 × 256

256 × 256
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and RGB-D images except that all the images in “RectangleHD” were resized using anti-alias 

algorithm to . 

 We then trained the model using U-Net 128 and U-Net 256 on “Square” dataset. We 

trained the model using ResNet with 9 blocks and ResNet with 6 blocks on “Rectangle” and 

“RectangleHD” datasets respectively. 

 Again, to measure the performance of our model in each experiment, mean histogram 

intersection and mean image hashing were used. However, the resolutions of images in different 

datasets were different, which would affect and introduce bias to the metrics we used. Therefore, 

to make the measurement unbiased, before measuring the metrics, we resized synthetic images in 

“RectangleHD” to  and cropped (remove paddings on both sides) synthetic images in 

“Square” to . Then all the synthetic images were in . 

      5.2.4.3. Result and Analysis 

Table 15: Mean histogram intersection and mean image hashing in B0, B6, B7, B8, B9, and B10. 

256 × 512

128 × 256

128 × 256 128 × 256

Experiment Name Dataset Backbone Mean Histogram 
Intersection

Mean Image 
Hashing

B6 Rectangle ResNet 6 blocks 0.871 6.0

B0 Rectangle ResNet 9 blocks 0.9 5.675

B7 RectangleHD ResNet 6 blocks 0.323 8.125

B8 RectangleHD ResNet 9 blocks 0.817 9.250

B9 Square U-Net 128 0.497 6.500

B10 Square U-Net 256 0.483 6.150
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Experiment 
Name

Synthetic 
Images, 

Sample 1

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 2

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 3

Ground 
Truth 

Images, 
Sample 3

B6

B0

B7

B8

B9
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Table 16: Synthetic X-ray images and the corresponding ground truth in B0, B6, B7, B8, B9, and 

B10. 

 From the result shown in table 15 and 16, it could be observed that U-Net family and 

“Square” dataset could not produce X-ray images with high quality. There were lots of noise 

points in the synthetic images in B9 and B10. It could be potentially explained by the intuition 

that the paddings occupied too much area on the image. 

 On the contrary, rectangle datasets and ResNet family performed much better. Although 

in B7, ResNet with 6 blocks showed extremely poor adaptation on the “RectangleHD” dataset, 

B0, B6 and B8 had relatively good performance both in the clarity of synthetic X-ray images and 

the shape of the spine curve. 

 It could be further observed that, the “Rectangle” dataset had an overall better 

performance than “RectangleHD” using ResNet family as the backbone of the generator. In B8, 

the synthetic X-ray images were clear though, the shape of the spine curve struggled to match the 

ground truth compared to B0 and B6. While in B0 and B6, the shape of the spine curve roughly 

matched with sound truth. It was easy to tell that B0 and B6 were better than B8. However, B0 

and B6 had very closed performances so that it was hard to tell which one was better only from 

the synthetic images. 

 Nevertheless, from the 2 numerical metrics, it could still indicate that B0 involving 

ResNet with 9 blocks and the “Rectangle” dataset had best performance both in the clarity of 

synthetic X-ray images and the shape of the spine curve. 

    5.2.5. Composition of Input Data 

B10

Experiment 
Name

Synthetic 
Images, 

Sample 1

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 2

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 3

Ground 
Truth 

Images, 
Sample 3
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      5.2.5.1. Motivation 

 Like in stage 2, we needed to find the best data composition of the input. Nevertheless, 

things became more complicated this time. Our original proposal was to synthesize the X-ray 

images from the RGB-D images and the anatomical landmarks. However, was it possible that 

using only the RGB images or depth images would yield a similar or even better result than 

using all of them? To prove we actually needed the RGB-D images and anatomical landmarks as 

the input data, we conducted experiments. 

      5.2.5.2. Experiment Design 

 We had RGB images, depth images, and anatomical landmarks as input data. Therefore, 

there should be 7 ways to compose the input data. As using pure anatomical landmarks as input 

data made no sense because the shape of the human body was not given to the model, we omitted 

that experiment. 

 Therefore, we conducted 5 additional experiments from B11 to B15 to compare with B0. 

B11 used pure RGB images, B12 used pure depth images, B13 used RGB-D images, B14 used 

RGB images and anatomical landmarks, B15 used depth images and anatomical landmarks. 

      5.2.5.3. Result and Analysis 

Table 17: Mean histogram intersection and mean image hashing in B0, B11, B12, B13, B14, and 

B15 (L stood for anatomical landmarks). 

Experiment Name Input Data 
Composition

Number of 
Channels

Mean Histogram 
Intersection

Mean Image 
Hashing

B0 RGB, D, L 10 0.9 5.675

B11 RGB 3 0.775 11.15

B12 D 1 0.836 10.2

B13 RGB, D 4 0.813 9.425

B14 RGB, L 9 0.826 10.15

B15 D, L 7 0.847 9.4
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Experiment 
Name

Synthetic 
Images, 

Sample 1

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 2

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 3

Ground 
Truth 

Images, 
Sample 3

B0

B11

B12

B13
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Table 18: Synthetic X-ray images and the corresponding ground truth in B0, B11, B12, B13, B14, 

and B15. 

 As shown in table 17 and 18 above, only using the RGB-D image plus anatomical 

landmarks could yield the best performance. None of the remaining experiments could have 

better synthetic images than B0. 

    5.2.6. Weight of L1 Loss 

      5.2.6.1. Motivation 

 One of the big innovation in the pix2pix model was to combine the cLSGAN loss and L1 

loss [7]. As argued by the author, pure cLSGAN loss seemed to produce more clear images with 

artifacts, while pure L1 loss seemed to produce blurry images with roughly correct color on 

different regions without artifacts. Hence, combining these 2 losses functions with a weight 

parameter  yielded a good improvement on the original model. 

B14

B15

Experiment 
Name

Synthetic 
Images, 

Sample 1

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 2

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 3

Ground 
Truth 

Images, 
Sample 3

λ
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 In this project, we also need to find the best way to combine these 2 losses functions. It 

was a really important parameter to tune. Before we found the right value for , no clear images 

could be generated. 

      5.2.6.2. Experiment Design 

 We set 4 additional  levels: 2.5, 5.0, 15.0, 30.0 for 4 additional experiments B16, B17, 

B18, B19 to compare with B0 with  being 10.0.  

 By setting these  levels, we could detect roughly the range we should set  to. 

      5.2.6.3. Result and Analysis 

Table 19: Mean histogram intersection and mean image hashing in B0, B16, B17, B18, B19. 

λ

λ

λ

λ λ

Experiment Name Mean Histogram 
Intersection

Mean Image Hashing

B0 10.0 0.9 5.675

B16 2.5 0.878 9.875

B17 5.0 0.834 9.775

B18 15.0 0.772 6.225

B19 30.0 0.367 6.375

λ

Experiment 
Name

Synthetic 
Images, 

Sample 1

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 2

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 3

Ground 
Truth 

Images, 
Sample 3

B0
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Table 20: Synthetic X-ray images and the corresponding ground truth in B0, B16, B17, B18, and 

B19. 

B16

B17

B18

B19

Experiment 
Name

Synthetic 
Images, 

Sample 1

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 2

Ground 
Truth 

Images, 
Sample 2

Synthetic 
Images, 

Sample 3

Ground 
Truth 

Images, 
Sample 3
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 Although it was not clear in numerical metrics shown in table 19, we could see that a 

high value of  could lead to blurry images as shown in B19 as shown in table 20, which was 

consistent to the argument of the author of the pix2pix model. However, in B19, the shape of the 

spine curve was roughly the same as the ground truth, which was better than other experiments. 

Moreover, while small  led to good clarity, they tended to fail in the shape of spine curve. 

 Therefore,  was roughly an optimal value for . Further research could still be 

done to evaluate the effect of  on the model. 

6. Future Works 

 In this section, we will present several items that we did not handle very well during the 

project. Therefore, if our project is going to be elaborated in the future, this part will be an 

important reference. 

 Firstly, the number of data samples were not enough compared to other similar projects. 

Actually, when we nearly finished this report, totally over 700 data samples had been collected. 

However, at that time, all of our experiments were conducted using 520 data samples. To keep 

the experiment reliable, we decided not to add about 200 additional data samples to our projects. 

Hence, this is an important aspect that this project can be elaborated in the future. It can be 

observed in table 22 in the appendix that, so far, the synthetic images are far from perfect. Some 

of the synthetic images still have wrong shape of spine curves compared to the ground truth. This 

problem can be potentially explained by the insufficiency of the data samples. 

 Secondly, the X-ray images were not strictly aligned. We were supposed to have 6 

anatomical landmarks on each X-ray images. However, due to the medical condition, time was 

not sufficient for the medical staff to label all 6 landmarks before the deadline of this project. 

Instead, they labeled 2 of them for us. Therefore, we could only align all the X-ray images 

roughly, which would contribute to the error of the model. Moreover, medically speaking, the 

body positioning of a patient when taking RGB-D images is definitely different from the body 

positioning when taking X-ray images as the arms will lift up in the latter case while the arms 

will lower down in the former case. Therefore, it was theoretically not possible to fully align X-

ray images and RGB-D images pixel by pixel. Therefore, if future elaboration is going to be 

λ

λ

λ = 10 λ

λ
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conducted, designing a deep learning-based model for image-to-image translate that do not 

require to align the input and output images will be a good direction. 

 Thirdly, we struggled to find reliable metrics to measure the performance of our model in 

stage 3. As we mainly cared about the clarity of the synthetic images and the correctness of the 

synthetic spine curves in the project, traditional metrics were not chosen by us. However, even 

the 2 metrics chosen by us, frankly speaking, could not fully reflect the performance of our 

model. We still found something experiments with 2 metrics that we could not explain. Hence, to 

find or even design more reliable metrics can be a good future work. In fact, we planned to use 

indirect methods to measure the quality of synthetic X-ray images after the final discussion with 

our supervisor. These indirect methods included doing landmark detection or apply the Cobb 

Angle estimator on the synthetic X-ray images to see if those models could yield good results on 

our synthetic X-ray images. However, the medical staff seemed not to have time with these 

indirect measurements. Although we sent the best batch of synthetic X-ray images to them, they 

did not give us the results at the end of this project. Therefore, if future work is permitted, these 

indirect measurements can also be a choice. 

 Finally, due to the medical condition, we received the 2 landmarks on X-ray images 15 

days before the deadline of this projects. Therefore, not every parameters or hyper-parameters in 

the pix2pix mode had been fully tuned by us. In the future, more research can be done to find the 

best configuration of the model. 

7. Conclusion 

 In this project, we mainly implemented and trained 2 deep learning-base models to do 

landmark detection and X-ray synthesis in stage 2 and 3 respectively. We were relatively pleased 

with the model we trained in stage 2, which was relatively robust and accurate. We were not so 

pleased with the model we trained in stage 3 for the error in the synthetic shapes spine curves. 

More efforts can still be put into this project in the future to elaborate it. 

 However, the proof of concept is overall positive. The depth images could indeed provide 

essential information for the surface geometry of the back of the patients. Thus using RGB-D 
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images to finally synthesize the corresponding X-ray images has been proved to be a sensible 

concept so far. 

 In conclusion, using RGB-D images of the back of the patients to synthesize the X-ray 

images of the back of the patients is a possible solution to the side effect of X-ray machines. If a 

robust end-to-end application could be developed to synthesize accurate and clear X-ray images, 

radiation would not be a necessary by-product to diagnose scoliosis in children. If such an 

application could be finished, risk of radiation on children in the process of diagnosis of scoliosis 

could be avoided, which would be a great invention. 
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Table 21: Final results of stage 2. 
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 Table 22: Final results of stage 3. 
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